
Pre-alpha release 0.0    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

9.    The Info menu

The GameKit includes an object call the InfoController which handles things like help, registration, 
order forms, mailing suggestions to the game's author, and the Info¼ panel itself.    It also has a 
simple View subclass to aid in creating animated Info¼ panels known as the AnimatedView.    It 
might make more sense for these object to be in the DAYMiscKit, since they really are generic, and
not specific to a game application.    Also, I will probably add a class to this for handling 
registration, so that the InfoController doesn't actually need to be subclassed to handle 
registration.    Instead, just connect it to an object that can say yay or nay.

InfoController
The main function of the InfoController object is to sit underneath the Info menu.    Clicking a 
button on the Info menu will typically send an action message to the InfoController, which will then



perform the desired function.    In many cases, this is to simply bring up a panel.    In other cases, it 
brings up a particular help file in the Help panel.    (Note that the Help¼ menu item should be 
connected as is standard for NEXTSTEP 3.x±to bring up the 3.x help panel.)    The following files are
used to implement the various InfoController features; your app should include them as described 
below if you wish to take advantage of the features which they implement:
InfoPanel.nib Contains the application's Info¼ panel.    It should be part of the English.lproj for 

your application.    This panel might contain special animated views as described 
in the next section.

Register.nib Contains a panel which may be used to enter registration keys.    This panel is set 
up by the InfoController to be a modal panel.    See the section below on 
registration for more information.

OrderForm.nib Contains a panel which may be used as an order form for your application.    
There are InfoController methods to help do rudimentary price extension for 
multiple copies.

README.rtfd A file which should be part of the NEXTSTEP Help for your application.    This file is
brought up the first time your application is launched and should be treated like 
release notes, or any sort of ªREADMEº file.    By putting it in the application and 
forcing the user to see it at least once, there is a greater chance that user will 
actually read some of what you put in here.    (Put the important stuff first, of 
course, so that it will be read before the user loses interest in the panel!)    
Sending the InfoController a ±readme: message brings up the Help¼ panel with 
this file showing.

License.rtfd Another file which should be in the Help directory.    This file should contain 
complete details of the software license.    This file can be brought up from an 
appropriate menu item, so a user can quickly locate the license for you 
application.    Sending the InfoController a ±license: message brings up the 



Help¼ panel with this file showing.
The following sections detail the features which the .nib files listed above implement.    Before that,
however, there is one other feature available±sending a suggestion to the game's author.    This is 
done by sending a message to Mail.app and loading an appropriate skeleton message into a 
Compose¼ window and happens when the InfoController gets a ±suggestion: message.    If you 
want to change the e-mail address, subject line, or the skeleton message, all of them are in the 
main string table of the application and may be adjusted from within the string table itself.    I need 
to update the method used so that it doesn't smash the contents of any open Compose¼ windows.
This will eventually be fixed.    For now, there is an alert panel to warn the user.

AnimatedView ± making impressive Info¼ panels
The Info¼ panel should be inside of its own .nib file, InfoPanel.nib, which has an InfoController as 
the file's owner.    The panel should be connected to the infoPanel outlet of the InfoController.    
The InfoController will load the .nib file, if necessary, and then bring up this panel when an ±info: 
message is received.    The ±infoPanel method returns the id of the Info¼ panel's window, loading
it from the .nib file if necessary.    On the panel itself, there should be two TextFields which are 
connected to the versionText and versionDateText outlets of the InfoController.    When the 
Info¼ panel is ordered out, these fields with be filled with appropriate values taken from the 
GameKit's global string table, which is obtained from the GameBrain object.    Make sure that the 
text fields are set up so that the version number and date will look alright when filled in.
Another connection which may be made, but is optional, is to put a subclass of AnimatedView in 
your Info¼ panel.    This View subclass is designed to provide simple animations to make Info¼ 
panels more interesting.    If such a View subclass is connected to the InfoController's niftyView 
outlet, then it will be sent a ±start: message when the Info¼ panel is displayed.    Make sure that 



the AnimatedView is set up to be the delegate of the Info¼ panel's window so that it will stop 
animating if the panel is closed.
The animated view does two things:    it sets up a timed entry (via an Animator object) to call itself 
periodically, and it handles starting and stopping animation at the appropriate times.    Your 
subclass needs to implement the animation itself.    To do this, override the ±autoUpdate method 
to draw the next frame of animation.    This method will be called once per frame.    If you need to 
do any special initializations or clean ups, you might need to override ±stop:, ±start:, ±free, and
±initFrame: as necessary.    Be sure to call the super implementation if you override any of these 
methods.    When you override the ±autoUpdate method, be sure to bracket all your drawing with
lock and unlock focus messages to self.    Right now, there are no publically available examples of 
an AnimatedView subclass.    I might put one into PacMan or NX_Invaders eventually.    If you are 
stck on how to implement an ±autoUpdate: method, Columns does have an actual example of 
this.

Handling registration keys
The Register¼ panel is found inside the Register.nib file.    The InfoController outlet registerPanel 
should be connected to the Register¼ panel.    There should also be two TextFields, connected to 
the InfoController outlets regText and regNumText on the panel.    The regText field should be 
uneditable and will be loaded with a serial number, taken from the serialNum instance variable.    
(You put something in the serialNum variable, as explained below.)    The regNumText is for the 
user to enter the registration key.    There should be two buttons on the panel, one to register and 
one to cancel the operation.    They connect to the InfoController's ±registerGame: and ±cancel 
Registration: methods, respectively.    Once all these connections are made, all that is left is for 
you to provide some way to check for valid keys and provide serial numbers.



There is a single method which you must override in order to provide for a registration mechanism. 
This is the ±keyOK method.    In this method, you must do two things.    First determine from the 
key, found in the key instance variable, a unique serial number.    The serial number should be 
copied into the serialNum instance variable.    Next, determine if the key string is valid or not.    If 
not, then return NO.    Return a YES if it is acceptable.    By default, if the key is invalid, the serial 
number ªNREGº will be used regardless of the vaule of the serialNum instance variable.    The 
serial number itself is displayed in the registration panel and the subject line of the mail message 
sent to the author.
No actual mechanism is provided to validate keys since each vendor will want to use their own 
amazing, proprietary, uncrackeable method.    Note that any good hacker who understands the 
GameKit could get past this whole mechanism anyway, as well as any other thing you might come 
up with, GameKit related or not.    This will only provide a very simple level of security.    Doing 
much more is probably not worth the effort since the enterprising will figure it out; the more 
challenging you make it, the more likely they'll want to break it just to say that they did it!

Making an order form
To build an order form, you will have to do a little bit of work.    First, lay out your order form in 
InterfaceBuilder.    The window should be in a separate .nib file (OrderForm.nib) with the 
InfoController as the file's owner.    The window should be connected to the orderFormPanel 
outlet of the InfoController.    Note that the panel will be prineted on a page by printing the whole 
window.    There is a Print button on the panel, which sends a ±printOrderForm: message to the 
InfoController.    Connect the costText outlet of the InfoController to a TextField which will display 
the total sum of money to send to the author.
For you make make your order from, you must add outlets to your InfoController subclass to 



connect to the various fields which specify things like how many licenses are ordered and so on.    
Then, override the ±costCalc: method to take the values from the fields you added, calculate the 
cost, and then set the value of the costText TextField to the sum you have calculated.    You may 
wish to have the last text field in the chain send a ±costCalc: message to the InfoController, but 
this is not necessary since the method will always be invoked before printing anyway.    The default 
±costCalc: simply puts a 10 in the field; you will most likely want to change this to suit your 
pricing structure.
If your game is free, then simply omit this .nib file and don't have an Order Form¼ entry in the Info
menu.    Leaving this section unconnected will not harm anything else.    The same goes for the 
registration mechanism.    Both are entirely optional when using the InfoController object.


